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This paper proposes a reduced-order model of power electronic components based on the proper orthogonal decomposition. Starting
from a full-wave finite-element model and several snapshots/frequencies, the reduced order model is constructed. The characteristic
complex impedance can then be extrapolated for the intermediate frequencies with a very low computational cost.

Index Terms—Reduced-order models, proper orthogonal decomposition, full wave, capacitive effects, finite-element methods.

I. INTRODUCTION

THE EVER increasing switching frequencies in modern
power electronic converters (from several kHz to several

tens of MHz) generate capacitive effects that must be accounted
for in early stages of the design for e.g. electromagnetic
compatibility issues. In multi-turn windings in DC/DC power
supplies, the parasitic capacitance and the leakage inductance
present a first resonance around 1 MHz, which is in the operat-
ing range of frequencies [1]. Furthermore, at those frequencies
the conductors start behaving as transmission lines [1], [2].

In power applications, several approaches have been pro-
posed to approximate the capacitive effects without solving the
full-wave Maxwell problem: the coupling of different quasi-
static finite-element (FE) formulations [3], or circuit models
with parameter extraction based either on the method of
moments [2] or on the FE method [1] (see also references
herein).

In this paper, we propose a full-wave FE formulation com-
bined with a reduced-order model (ROM) based on the proper
orthogonal decomposition (POD). The POD has been widely
used in engineering problems [4] and in particular in low-
frequency computational electromagnetism (quasi-statics) [5],
[7], [6]. It consists in projecting the original basis (constructed
using the finite element mesh) onto a reduced basis so that
the size of the matrix system is highly reduced. The discrete
projection operator is most often determined by means of the
snapshot technique [5]. Herein, we solve the full-wave problem
in the frequency domain for relevant frequencies in order to
obtain the snapshots. The obtained projection operator allows
us to dramatically reduce the computational time when solving
the problem for intermediate frequencies. As test case we
consider the microcoil depicted in Fig. 1.

II. FULL WAVE ELECTROMAGNETIC PROBLEM

Let us consider a bounded domain Ω with conducting part
Ωc, non-conducting part ΩC

c and boundary Γ. Adopting the
complex formalism (frequency f , pulsation ω = 2πf ), the a−
v strong formulation of Maxwell’s equations and constitutive

Fig. 1. Microcoil geometry, mesh and induced current density (real part).

relations read (complex numbers in bold, ı =
√
−1):

curl ν curla− (ω2ε− ıωσ)a + (ıωε+ σ)gradv = js , (1)
div (ıεωa) = 0 , (2)

j = js + σe , b = µh , d = εe , (3)

with a the magnetic vector potential, v the electric scalar
potential, j the current density, js the source current density, e
the electric field, b the magnetic flux density, h the magnetic
field and d the electric flux density. Material characteristics
(linear isotropic media) are the reluctivity ν = 1/µ (inverse
of permeability), the permittivity ε and the conductivity σ.
Suitable boundary conditions must be imposed to ensure the
uniqueness of the solution [8].

Integration by parts of (1)–(3) yields the weak a − v
formulation: find a and v such that

(νcurla, curla′)Ω − ω
2 (εa,a′)Ω + ıω (σ a,a′)Ωc

+(ıωε+ σ) (gradv,a′)Ω = (js,a
′)Ωs

, (4)

(εa, gradv′)Ω = 0 , (5)

holds for all test functions a′ and v′ in suitable function spaces.
A Silver-Müller absorbing boundary condition is imposed at
the outer boundary Γ. The linear frequency-dependent dis-
cretized matrix system can be written as:

Ax = J (6)



with x the column vector of N unknowns, A an N × N
matrix and J the right-hand-side column vector comprising
the source.

III. MODEL ORDER REDUCTION

We apply the POD [4] to reduce the full-wave matrix
system (6). The solution vector x is then approximated by
a vector xr in a reduced basis (size M � N ) such that

x ≈ Ψxr (7)

with Ψ a discrete projector operator. This Ψ operator is
typically constructed by applying the snapshot technique [5],
i.e. generated from original solutions (full-order model) either
in the time domain or in the frequency domain. Herein the
full problem (6) is solved in the frequency domain for a
set of M frequencies (snapshots). The snapshot matrix S is
defined by the column vectors xj , 1 < j ≤ M , the solutions
x at the snapshot/frequency fj . Applying the singular value
decomposition (SVD), this snapshot matrix reads

S = VΣWT , (8)

with V an N × N matrix, W an M ×M matrix and Σ an
N ×M diagonal matrix containing the singular values. The
ith row of W represents the entries of the ith column of S
projected in the reduced basis formed by the M columns of
the matrix VΣ. The operator Ψ is obtained by normalizing the
matrix VΣ (or SW). The reduced system to solve is given by

ArxR = Jr , (9)

with Ar = ΨTAΨ and Jr = ΨTJ . Note that computing the
SVD of SN×M is an expensive (prohibitive) task, in practice,
the matrix of correlations C = STS/M can be used instead [4].

IV. APPLICATION

As test case we consider the micro-coil depicted in Fig. 1.
Made of copper, it has 2 turns with a square section 5×5µm2.
The gap between successive wires is 5µm. The geometry has
been meshed with 13420 prisms and 5360 hexahedra, which
yields to 46563 complex unknowns. This discretization is fine
enough for the highest considered frequency and it is kept
invariant for all computations.

The full-wave problem has been solved with a classical FE
approach (reference) and with a RO approach with M = 2, 3, 6
snapshots in a wide range of frequencies f ∈ [0.01, 100] GHz.
The modulus and phase of the micro-coil impedance are
compared in Fig. 2. The resonance frequency is at 64.2 GHz.

With M = 2 snapshots, f = [0.01, 100] GHz, we are
not able to recover the impedance value. Adding the res-
onance frequency to the set of snapshots M = 3, f =
[0.01, 64.2, 100] GHz, clearly improves the result, getting al-
ready a quite accurate approximation. Indeed the average
L2−relative error on the impedance of 0.0098. With M = 6,
f = [0.01, 0.1, 1, 30, 64.2, 100] GHz, the FE and the RO
curves (both modulus and phase) are indistinguishable, the
agreement is excellent with an average L2−relative error on
the impedance of 6.7e−4.
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Fig. 2. Modulus (up) and phase (down) of the micro-coil impedance as
a function of frequency. Comparison of ROM results (different number of
snapshots M = 2, 3, 6) with reference FE solution.

With regard to the computational time, a full FE solution
requires ≈31.1 s while a ROM solution is obtained after
≈0.0017 s. The gain in computational cost is thus huge for
determining the impedance values for intermediate frequencies,
provided well-chosen snapshots.

V. CONCLUSION

In this paper, we proposed a POD-based model-order reduc-
tion approach to fully characterize power electronic compo-
nents in a wide frequency range with a very low computational
cost. Using a set of well chosen frequencies/snapshots, we are
able to compute the characteristic impedance (modulus and
phase) for the whole spectrum.

In the extended paper, the proposed approach will be elab-
orated in detail and further analysis of the ROM results per-
formed, paying particular attention to the numerical stability,
accuracy and effectiveness with the choice of frequencies.
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